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Abstract 

 

Decimal arithmetic is very important for computations 

in financial and commercial transactions which include 

banking system, tax calculation, billing etc. Decimal 

arithmetic algorithm mainly includes decimal addition 

and multiplication. The main problem in the existing 

decimal arithmetic is the need for correcting the result as 

it is in the binary form. This causes the implementation 

area to be large and increases the delay. In this paper, a 

high speed area optimized binary coded decimal digit 

adder and multiplier are designed. The proposed adder 

and multiplier have improved delay and area due to the 

employed correction free mechanism and the result thus 

obtained is in BCD form without adding any correction 

values. This paper also presents the multilevel 

optimization of the Boolean expressions. It minimizes 

the layout area, delay and increases the performance. 

 

Keywords: Decimal arithmetic, BCD, correction free 

mechanism, multilevel logic optimization 
 
1. Introduction 

As we are in the era of electronic computing, decimal 

arithmetic plays a vital role in commercial, financial, 

internet and industrial control applications. Most of the 

computing applications are based on binary arithmetic, 

but the real problem is that binary approximation does 

not produce accurate result. For example if a 

telecommunication company approximates a 5% sale tax 

on an item (such as $0.70 for a telephone call) the yearly 

loss will be more than $5 million. Binary decimal 

arithmetic is required to avoid such incorrect 

approximations. Also, in most of the applications, 

decimal software runs on custom binary hardware in 

order to produce precise decimal results, leading to 

another problem of excessive delays. Software 

implementation of decimal arithmetic is about 100 to 

1000 times slower than the binary implementation in  

 

 

hardware. In a survey of IBM corporation showed that 

almost 55%   of the numeric data columns, used by 51 
major organization’s databases, were decimal data types 

and 43.7% were integer types which can be stored as 

decimals. In order to meet the need for growing 

evolution of decimal arithmetic, it’s necessary to 

develop efficient algorithms. Decimal digit adders and 

decimal digit multipliers are the building blocks of any 

decimal hardware to support decimal arithmetic. 

Here we are proposing a high speed and area optimized 

decimal digit adder and decimal digit multiplier. These 

designs are described and simulated using verilog 

hardware description language. 

2. Related works 

In conventional decimal digit adder [7], the 

output sum is analyzed based on the input carry value. 

Depending on the input carry if the sum is greater than 

9, then it is represented by using digit generate and digit 

propagate signals. For a 4-bit adder, digit propagate 

signal is obtained by ANDing Sum [3] and Sum [0]. 

Digit generate signal is obtained by ANDing the values 

of Sum [3] and Sum [2]. Then the results are ORed with 

the ANDed values of Sum [3] and Sum [1] and carry 

output value.  

  The conditional speculative adder [3], 

simplifies the sum correction of the speculative 

methods. Full binary parallel prefix carry tree 

configuration is used to improve delay eliminating post-

correction from critical path. Quaternary carry tree 

configurations used in this method Improve area 

simplifying correction. 

I.S. Hwang [6], introduced binary and decimal 

adder unit. This adder is designed to support both binary 

and decimal additions. A binary carry look-ahead adder 

(CLA) is used to add two input operands, which are 

either binary or decimal numbers. The result of the 

binary CLA is the correct result for binary inputs, but it 
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needs to be corrected for decimal inputs. Therefore, in 

the decimal case, the binary CLA addition result and 

some of the carries (C[4],C[8],C[12],...)are used to 

compute the corrected result. 

Reduced Delay BCD Adder [1] introduced by 

Alp Arslan Bayrakci and Ahmet Akkas in order to 

improve the delay. In this design they used a parallel 

prefix network is used to reduce the delay of decimal 

addition. It improves the delay when compared to 

Hwang’s Adder. But the carry network again introduces 

delay. 

Mark A. Erle and Michael J. Schulte [8] 

introduced Decimal Multiplication via Carry-Save 

Addition. In that Decimal multiplication performs the 

computation P = A·B where A is the multiplicand, B is 

the multiplier, and P is the product. It is assumed that A 

and B are each n digits and P is maximally 2n digits The 

most notable shortcomings of this approach are the 

significant area or delay to generate the eight multiples, 

and the eight additional registers needed to store the 

multiples. An alternative to storing all the multiples 

(called primary multiples or a primary set) is storing a 

reduced set of multiples.  

Another design introduced by G. Jaberipur and 

A. Kaivani [5], used a standard 4×4 unsigned binary 

multiplier generating an 8-bit binary output, which 

should be corrected to two BCD digits, with the same 

arithmetic value. Given that the product value belongs to 

[0, 81], its most significant bit (weighted 2
7
) is always 

zero. Let X =x3x2x1x0 and Y = y3y2 y1 y0 represent the 

two input BCD digits and p6p5p4 p3 p2 p1p0 is the 

output (i.e. product) of the standard 4 ×4 multiplier, with 

p7 = 0 ignored. But in decimal multiplication, because 

of particularities of using radix 10, which is not a power 

of 2, one needs to generate BCD partial products to be 

followed by BCD multi-operand addition. Therefore we 

need localized reduction trees in order to convert binary 

to BCD value. 

  A. Vazquez, E. Antelo and P. Montuschi [2] 

introduced “A new family of high performance parallel 

decimal multipliers”, which gives an efficient 

implementation of decimal parallel multiplication by a 

parallel generation of partial products and the reduction 

of these partial products using a novel decimal carry–

save addition tree. 

The decimal addition and multiplication used in 

the above designs need to go for a correction stage in 

order to obtain the BCD result. For that an analyzer 

network is used which introduces delay. So in this 

project a correction free mechanism is used based upon 

the Direct Boolean Expression Method. Besides these 

the partial product reduction in the multiplier can be 

avoided by using the proposed method and thereby 

increases the speed. 

3. Correction free BCD digit adder 
Here an optimized correction free BCD digit 

adder is proposed. The 2 decimal input digits of the 

BCD adder are A € {0, 9} and B € {0, 9} and the decimal 

carry input is Cin. We can represent the decimal sum and 

the decimal carry as as S € {0, 9} and Cout respectively. 

The decimal value of A, B, and S can be used to obtain 

their 8421 BCD representation. In general, we can write            

A =a3a2a1a0, B = b3b2b1b0, and S =s3s2s1s0, where ai, bi, 

and si € {0, 1}   i € {0, 1, 2, 3}. A and B can be 

expressed in terms of two integers m = a3a2a1 and n = 

b3b2b1 as:            A = 2 × m+ a0 and B = 2 × n + b0, 

where 0 ≤m ≤ 4 and     0 ≤ n ≤4.This implies that the 

output of the BCD adder can be expressed as 

{COUT, SUM}   =   A+B+CIN 

              = (2×m+a0) + (2×n+b0) +Cin 

We can rearrange the above expression for BCD adder 

output as: 

{COUT, SUM}= A+B+CIN 

                         =   (2×m+a0) + (2×n+b0) + Cin 

                         = (2×n+m) + (a0+b0+Cin) 

Using the above formula, we have designed the BCD 

digit adder that consists of two stages: Stage1 and 

Stage2. Fig: 1 shows the proposed BCD adder. The 

inputs to Stage1 are m and n. Stage1 generates the 

partial decimal sum: Z = z3z2z1z00 = 2 × (n + m). It 

should be observed that this decimal partial sum consists 

of an even decimal digit (z2z1z0 0) and a decimal carry 

z3 that can be either 1 or 0 based on the values of m and 

n. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig:1   Proposed BCD adder 

For example, if the two input decimal digits A and B are 

6 = (0110)BCD and 4 = (0100)BCD, respectively, then we 

  a0     b0 

      3      3   

 Cout Cin 

z3z2z1z0 

n          m 

Stage 1 

Stage 2 

s 
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have: m = (011)2 = 3 , n = (010)2 = 2 and Z= z3z2z1z0 0 

= 2 × (n + m) = 2 × (3 + 2) = (12)10.This means that the 

decimal carry z3 is 1 and the even decimal digit z2 z1 z0 

0 = (2)10 = (0010)BCD. Since the produced decimal digit 

is always even, only z3z2z1z0 are forwarded to Stage2 o 

the BCD digit adder. For finding the Boolean 

expression, first we have to make a truth table for 

different combinations of the input starting from(0000) 

to (1001). 

Table 1: Examples from the truth table to demonstrate how 

the first stage output is calculated 
a0a1a2a3 b0b1b2b2 m n 2 (m +n) z3z2z1z0 

0000 0000 0 0 0 0000 

0000 0001 0 0 0 0000 

0000 0010 0 1 2 0001 

0000 0011 0 1 2 0001 

0000 0100 0 2 4 0010 

After getting the truth table we have to derive the 

boolean expressions. Here we use Quine Mccluskey 

method for truth table simplification because it gives 

more systematic method of minimizing expressions of 

larger number of variables. 
Based on this approach, the values of z3, z2, z1, and z0 

are computed for all possible combinations of A and B 

and the following optimized boolean equations are 

derived for Stage1: 

z3=a2a1b2+a2a1’b3+a2b2b1+a3b2b1’+a1b3+a3b1+a3b

3; 

z2=a3’a2’a1’b3+a3b3’b2’b1’+a2a1’b2b1’+a2a1b2’b1+a

2’a1b2b1; 

z1=a3’a2’a1’b2b1+a2b3’b2’b1’+a3’a2’b2b1’+a2a1’b2

’b1+a2’a1b2’b1+a2a1b3+ a3b2b1+a3b3; 

z0=a3’a2’a1’b2b1+a1b3’b2’b1’+a3’a1’b2’b1+a2’a1b2b

1’+a2a1b2b1+a2 a1’b3+a3b2b1’+a3b3; 

The outputs of Stage1 along with a0, b0, and Cin are 

given as input to Stage2. In order to design Stage2, the 

values of Cout, s3, s2, s1, and s0 have been calculated 

for all possible combinations of z3, z2, z1, z0, a0, b0, 

and Cin and optimized boolean equations for Stage2 

have been derived. To illustrate this procedure, the 

various possible combinations are presented in Table II. 

For example, if the values of z3, z2, z1, and z0 are 1, 0, 

1, and 1, respectively, then this means that the value of 2 

× (m + n) that is to be added to the value of (a0 + b0 + 

Cin) is (16)10,since a0, b0, and Cin in the example are 1, 

1, and 1 respectively. The value of A+B = 2 × (n +m) + 

(a0 + b0 + Cin) is (19)10. Therefore, the computed 

values for Cout, s3, s2, s1, and s0 are 1, 1, 0, 0, and 1, 

respectively. Based on this, Stage2 generates the 

decimal sum output and the decimal carry output.It 

should be emphasized that our proposed BCD digit 

adder does not require any corrections to the results and 

the results are computed with only two stages.  

Table 2: Examples from the truth table to demonstrate how the 

final stage output is calculated 

z3z2z1z0 z a0 b0 Cin cout s3s2s1s0 

0000 0 0 0 0 0 0000 

0000 0 0 0 1 0 0001 

0001 2 0 1 0 0 0001 

0001 2 0 1 1 0 0010 

The truth table obtained above has to be simplified in 

the similar way as we did for computing the Boolean 

expression for the first stage output. And thus we derive 

the Boolean expression for the corresponding sum and 

output carry. 
Cout=z2 cin b0 +z2 cin a0+z2 a0 b0+z3; 

s3=z2 cin’ b0’+z2 cin’a0’+z1 z0 cin b0+z1 z0 cin a0+z1 z0 a0 

b0+z2 a0’ b0’; 

s2=z1cin’b0’+z1cin’a0’+z1a0’b0’+z1’z0cinb0+z1’z0cina0+z1

’z0a0b0+z0’z1; 

 s1=z2’ z0’cin b0+z2’ z0’cin a0 z2’z0’a0 b0+z0 a0’ b0’+z0 

cin’b0’+z0 cin’a0’; 

s0=cin a0’b0’+cin’a0 b0’+cin’a0’b0+cin a0 b0; 

4. Direct Boolean Expression BCD Digit 

Multiplier 
In the proposed direct Boolean expression BCD 

digit multiplier, the direct functionality is performed by 

using the simplified Boolean expression. In this case, the 

two operands are two decimal digits A = a3a2a1a0 and 

B = b3b2b1b0 and the output P = A × B is 8 bit 

p7p6p5p4p3p2p1p0 (two BCD digits). The input given 

is 8 bits wide; the number of possible combinations in 

the truth table is 2
8
 = 256. Out of these 256 

combinations only 100 combinations are valid and the 

rest are invalid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       
Fig.2 Design flow 

Table 3: Examples from the Truth table of BCD multiplier 

BUILDING TRUTHTABLE 

GENERATING BOOLEAN EXPRESSION 

GENERATING HDL CODE 

DESIGN SIMULATION 
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Inputs Outputs 

a3a2a1a0 b3b2b1b0 p7p6p5p4 p3p2p1p0 

0000 0001 0000 0000 

0010 0110 0001 0010 

0100 1001 0011 0110 

1010 1001 xxxx Xxxx 

 

The truth table obtained above is then used for finding 

the Boolean expression. Here we have done two level 

logic optimization. And we will get the following 

Boolean Expressions: 

 

p0 = a0 b0; 

p1 = a2 a1 a0 b3  + a2 a1' a0' b3  + a3 a0' b3 b0 + a3 b2 

b1 b0 + a3 a0 b3 b0' + a3 b2 b1’b0' + a3' a2' a1' a0 b1  + 

a2 a1 a0' b2 b1  + a1 b3' b2' b1' b0 + a2' a1 a0' b3 b0' + 

a2 a1 a0' b1 b0' + a2 a1 b2 b1 b0' + a1 a0' b2 b1 b0' + a3 

a0' b2' b1 b0' + a2 a1' a0' b2' b1 b0 + a2' a1 a0 b2 b1' b0' 

+ a2 a1' a0' b2 b1' b0' + a2' a1' a0 b1 b0 + a1 a0 b2' b1' 

b0 + a2' a1 a0' b2' b1 b0 + a2' a1 a0 b2' b1 b0'; 

 

p2 = a2' a1 b2' b1 b0' + a2 b3' b2' b1' b0 + a3' a1' a0 b2 

b0 + a2' a1' a0 b2 b0' + a2 a0' b2' b1' b0 + a3 a0' b3 b0' + 

a2' a1 b3 b0' + a3 a0' b2' b1  + a1 a0 b3 b0' + a3 a0' b1 

b0 + a2 a0' b2 b0' + a2' a1 a0 b3  + a3 b2' b1 b0 + a2 a1' 

a0 b0 + a0 b2 b1' b0 + a1 a0 b2' b1 b0' + a2' a1 a0' b1 

b0; 

 

p3 = a3' a2' a1' a0 b3  + a2' a1 a0' b3 b0 + a3 b3' b2' b1' 

b0 + a2 a1 a0' b3 b0' + a3 a0' b2 b1 b0' + a3 a0 b2' b1 

b0' + a2 a1 a0 b2 b1 b0 + a2 a1' a0' b2 b1 b0 + a2' a1 a0 

b2' b1 b0 + a2 a1 a0' b2' b1 b0 + a2' a1 a0 b2 b1 b0' + a2 

a1' a0' b2' b1 b0' + a2 a1 a0 b2 b1' b0' + a2' a1 a0' b2 b1' 

b0'; 

 

p4 = a2' a1 a0' b3  + a2 a1' a0' b3  + a2 a1' a0 b1  + a3 

a0' b3 b0 + a1 b2 b1' b0 + a3 a0 b3 b0' + a3 b2' b1 b0' + 

a3 b2 b1' b0' + a3 a0' b2 b1 b0 + a2 a1 a0 b3 b0' + a2 a1' 

a0' b2 b1' b0' + a1 a0' b3 b0 + a3 a0 b1 b0' + a2' a1 a0' 

b2 b1  + a2 a0' b2' b1 b0 + a2' a1 a0 b2 b0' + a1 a0' b2 

b1 b0' + a2 a1 b2' b1 b0'; 

 

p5 = a3 a0' b3  + a3 b3 b0' + a2' a1 a0 b3  + a2 a1' a0' b3  

+ a1 a0 b3 b0 + a3 a0 b1 b0 + a3 b2' b1 b0 + a3 b2 b1' 

b0' + a2' a1 a0 b2 b1 b0 + a2 a1 a0 b2' b1 b0 + a2 a1' b2 

b1  + a2 a0 b2 b1'  + a2 b2 b1' b0 + a2 a1 a0' b2 b0'; 

 

p6= a2 a1 b3 + a2 a0 b3 + a3 a0' b3 + a3 b2 b1 + a3 b2 

b0 + a3 b3 b0' + a2 a1 a0 b2 b1 + a2 a1 b2 b1 b0; 

 

p7 = a3 a0 b3 b0; 

 

The two level optimization we done here will increase 

the area and delay. Therefore in order to reduce that we 

have to go for multilevel optimization. The advantages 

of the multilevel logic optimization includes  

minimizing overall layout area and critical path delay 

time, maximizing the testability of the synthesized logic 

and providing a complete set of test vectors as a by-

product of the optimization. 

 

5. Multilevel Logic Optimization 
Multilevel logic can be described by a set χ of 

completely specified Boolean functions. Each Boolean 

function f € χ , maps one or more input and intermediate 

signals to an output or a new intermediate signal. If a 

circuit is represented as a Boolean network, each node 

has a Boolean variable and a Boolean expression 

associated with it. There is a directed edge to a node g 

from a node f if the expression associated with node g 

contains in it the variable associated with f in either true 

or complemented form. A circuit is also viewed as a set 

of gates. Each gate has one or more input pins and one 

output pin.  

Here we are applying this logic to the proposed 

correction free decimal digit adder* and decimal digit 

multiplier* thereby minimizing the boolean expression. 

For that we need to factorize each Boolean expression 

and have to substitute values for the common terms 

present in all the expressions. For example, in the case 

of adder the Boolean expression for z3 can be written as: 

 

z3=m6g1+m4a1’+m5b1’+m8+m9+m3; 

Where m6=a2b2, g1=a1+b1; 

m4=a2b3, m5=a3b2; 

m8=a1b3, m9=a3+b1; 

m3=a3b3 

 

Similarly all other expressions can be written by 

assigning values to the common terms. The same 

procedures have to be followed for decimal digit 

multiplier. 

 

6.  Results and Comparisons 

 
From the table given below it is clear that the 

synthesis results of the correction free adder and 

multiplier after multilevel logic optimization has 

comparatively smaller area. 
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Table 4: Area for decimal digit adder and decimal digit 

multiplier 

 
Decimal digit adder 

 

Area in number of LUT’s 

Proposed decimal digit adder(3) 
 

 

11 

Multilevel logic optimized 

adder* 

 

10 

Conditional speculative adder 

[3] 

19 

 

Decimal digit multiplier 

 

Area in number of LUT’s 

 
Proposed decimal digit multiplier 

(4) 

 
29 

Multilevel logic optimized 
multiplier* 

 
28 

 
BCD digit multiplier [2] 

 

 
32 

 
 

  

 

 
Fig: 3 Simulation result of Correction free BCD adder 
 

 
 
Fig: 4 Simulation result of Correction free BCD multiplier 

 

 

 

7. Conclusion 
 

In this paper, direct Boolean expression binary coded 

decimal digit adder and multiplier will produce the 

output in the BCD form. As a result a correction free 

BCD digit adder and multiplier is obtained when 

compared with the existing system which needs an 

analyzer circuit for determining the whether the output 

value is greater than 9.Here the Boolean expression is 

obtained using two-level logic optimization is modified 

to multilevel logic optimization for reducing the area 

and delay. The design is synthesized, verified and tested 

for correct functionality using verilog coding and 

simulation. 
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