
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

1

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

Design of High Speed Area Optimized Binary Coded

Decimal Digit Adder and Multiplier

1Merinmol Mathew 2 Mrs. Georgina Binoy Joseph

1 Electronics and Communication, K.C.G College of Technology,

Chennai, Tamil Nadu 600097,India

 2 Electronics and Communication, K.C.G College of Technology,

Chennai, Tamil Nadu 600097,India

Abstract

Decimal arithmetic is very important for computations

in financial and commercial transactions which include

banking system, tax calculation, billing etc. Decimal

arithmetic algorithm mainly includes decimal addition

and multiplication. The main problem in the existing

decimal arithmetic is the need for correcting the result as

it is in the binary form. This causes the implementation

area to be large and increases the delay. In this paper, a

high speed area optimized binary coded decimal digit

adder and multiplier are designed. The proposed adder

and multiplier have improved delay and area due to the

employed correction free mechanism and the result thus

obtained is in BCD form without adding any correction

values. This paper also presents the multilevel

optimization of the Boolean expressions. It minimizes

the layout area, delay and increases the performance.

Keywords: Decimal arithmetic, BCD, correction free

mechanism, multilevel logic optimization

1. Introduction

As we are in the era of electronic computing, decimal

arithmetic plays a vital role in commercial, financial,

internet and industrial control applications. Most of the

computing applications are based on binary arithmetic,

but the real problem is that binary approximation does

not produce accurate result. For example if a

telecommunication company approximates a 5% sale tax

on an item (such as $0.70 for a telephone call) the yearly

loss will be more than $5 million. Binary decimal

arithmetic is required to avoid such incorrect

approximations. Also, in most of the applications,

decimal software runs on custom binary hardware in

order to produce precise decimal results, leading to

another problem of excessive delays. Software

implementation of decimal arithmetic is about 100 to

1000 times slower than the binary implementation in

hardware. In a survey of IBM corporation showed that

almost 55% of the numeric data columns, used by 51
major organization’s databases, were decimal data types

and 43.7% were integer types which can be stored as

decimals. In order to meet the need for growing

evolution of decimal arithmetic, it’s necessary to

develop efficient algorithms. Decimal digit adders and

decimal digit multipliers are the building blocks of any

decimal hardware to support decimal arithmetic.

Here we are proposing a high speed and area optimized

decimal digit adder and decimal digit multiplier. These

designs are described and simulated using verilog

hardware description language.

2. Related works

In conventional decimal digit adder [7], the

output sum is analyzed based on the input carry value.

Depending on the input carry if the sum is greater than

9, then it is represented by using digit generate and digit

propagate signals. For a 4-bit adder, digit propagate

signal is obtained by ANDing Sum [3] and Sum [0].

Digit generate signal is obtained by ANDing the values

of Sum [3] and Sum [2]. Then the results are ORed with

the ANDed values of Sum [3] and Sum [1] and carry

output value.

 The conditional speculative adder [3],

simplifies the sum correction of the speculative

methods. Full binary parallel prefix carry tree

configuration is used to improve delay eliminating post-

correction from critical path. Quaternary carry tree

configurations used in this method Improve area

simplifying correction.

I.S. Hwang [6], introduced binary and decimal

adder unit. This adder is designed to support both binary

and decimal additions. A binary carry look-ahead adder

(CLA) is used to add two input operands, which are

either binary or decimal numbers. The result of the

binary CLA is the correct result for binary inputs, but it

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

2

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

needs to be corrected for decimal inputs. Therefore, in

the decimal case, the binary CLA addition result and

some of the carries (C[4],C[8],C[12],...)are used to

compute the corrected result.

Reduced Delay BCD Adder [1] introduced by

Alp Arslan Bayrakci and Ahmet Akkas in order to

improve the delay. In this design they used a parallel

prefix network is used to reduce the delay of decimal

addition. It improves the delay when compared to

Hwang’s Adder. But the carry network again introduces

delay.

Mark A. Erle and Michael J. Schulte [8]

introduced Decimal Multiplication via Carry-Save

Addition. In that Decimal multiplication performs the

computation P = A·B where A is the multiplicand, B is

the multiplier, and P is the product. It is assumed that A

and B are each n digits and P is maximally 2n digits The

most notable shortcomings of this approach are the

significant area or delay to generate the eight multiples,

and the eight additional registers needed to store the

multiples. An alternative to storing all the multiples

(called primary multiples or a primary set) is storing a

reduced set of multiples.

Another design introduced by G. Jaberipur and

A. Kaivani [5], used a standard 4×4 unsigned binary

multiplier generating an 8-bit binary output, which

should be corrected to two BCD digits, with the same

arithmetic value. Given that the product value belongs to

[0, 81], its most significant bit (weighted 2
7
) is always

zero. Let X =x3x2x1x0 and Y = y3y2 y1 y0 represent the

two input BCD digits and p6p5p4 p3 p2 p1p0 is the

output (i.e. product) of the standard 4 ×4 multiplier, with

p7 = 0 ignored. But in decimal multiplication, because

of particularities of using radix 10, which is not a power

of 2, one needs to generate BCD partial products to be

followed by BCD multi-operand addition. Therefore we

need localized reduction trees in order to convert binary

to BCD value.

 A. Vazquez, E. Antelo and P. Montuschi [2]

introduced “A new family of high performance parallel

decimal multipliers”, which gives an efficient

implementation of decimal parallel multiplication by a

parallel generation of partial products and the reduction

of these partial products using a novel decimal carry–

save addition tree.

The decimal addition and multiplication used in

the above designs need to go for a correction stage in

order to obtain the BCD result. For that an analyzer

network is used which introduces delay. So in this

project a correction free mechanism is used based upon

the Direct Boolean Expression Method. Besides these

the partial product reduction in the multiplier can be

avoided by using the proposed method and thereby

increases the speed.

3. Correction free BCD digit adder
Here an optimized correction free BCD digit

adder is proposed. The 2 decimal input digits of the

BCD adder are A € {0, 9} and B € {0, 9} and the decimal

carry input is Cin. We can represent the decimal sum and

the decimal carry as as S € {0, 9} and Cout respectively.

The decimal value of A, B, and S can be used to obtain

their 8421 BCD representation. In general, we can write

A =a3a2a1a0, B = b3b2b1b0, and S =s3s2s1s0, where ai, bi,

and si € {0, 1} i € {0, 1, 2, 3}. A and B can be

expressed in terms of two integers m = a3a2a1 and n =

b3b2b1 as: A = 2 × m+ a0 and B = 2 × n + b0,

where 0 ≤m ≤ 4 and 0 ≤ n ≤4.This implies that the

output of the BCD adder can be expressed as

{COUT, SUM} = A+B+CIN

 = (2×m+a0) + (2×n+b0) +Cin

We can rearrange the above expression for BCD adder

output as:

{COUT, SUM}= A+B+CIN

 = (2×m+a0) + (2×n+b0) + Cin

 = (2×n+m) + (a0+b0+Cin)

Using the above formula, we have designed the BCD

digit adder that consists of two stages: Stage1 and

Stage2. Fig: 1 shows the proposed BCD adder. The

inputs to Stage1 are m and n. Stage1 generates the

partial decimal sum: Z = z3z2z1z00 = 2 × (n + m). It

should be observed that this decimal partial sum consists

of an even decimal digit (z2z1z0 0) and a decimal carry

z3 that can be either 1 or 0 based on the values of m and

n.

Fig:1 Proposed BCD adder

For example, if the two input decimal digits A and B are

6 = (0110)BCD and 4 = (0100)BCD, respectively, then we

 a0 b0

 3 3

 Cout Cin

z3z2z1z0

n m

Stage 1

Stage 2

s

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

3

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

have: m = (011)2 = 3 , n = (010)2 = 2 and Z= z3z2z1z0 0

= 2 × (n + m) = 2 × (3 + 2) = (12)10.This means that the

decimal carry z3 is 1 and the even decimal digit z2 z1 z0

0 = (2)10 = (0010)BCD. Since the produced decimal digit

is always even, only z3z2z1z0 are forwarded to Stage2 o

the BCD digit adder. For finding the Boolean

expression, first we have to make a truth table for

different combinations of the input starting from(0000)

to (1001).

Table 1: Examples from the truth table to demonstrate how

the first stage output is calculated
a0a1a2a3 b0b1b2b2 m n 2 (m +n) z3z2z1z0

0000 0000 0 0 0 0000

0000 0001 0 0 0 0000

0000 0010 0 1 2 0001

0000 0011 0 1 2 0001

0000 0100 0 2 4 0010

After getting the truth table we have to derive the

boolean expressions. Here we use Quine Mccluskey

method for truth table simplification because it gives

more systematic method of minimizing expressions of

larger number of variables.
Based on this approach, the values of z3, z2, z1, and z0

are computed for all possible combinations of A and B

and the following optimized boolean equations are

derived for Stage1:

z3=a2a1b2+a2a1’b3+a2b2b1+a3b2b1’+a1b3+a3b1+a3b

3;

z2=a3’a2’a1’b3+a3b3’b2’b1’+a2a1’b2b1’+a2a1b2’b1+a

2’a1b2b1;

z1=a3’a2’a1’b2b1+a2b3’b2’b1’+a3’a2’b2b1’+a2a1’b2

’b1+a2’a1b2’b1+a2a1b3+ a3b2b1+a3b3;

z0=a3’a2’a1’b2b1+a1b3’b2’b1’+a3’a1’b2’b1+a2’a1b2b

1’+a2a1b2b1+a2 a1’b3+a3b2b1’+a3b3;

The outputs of Stage1 along with a0, b0, and Cin are

given as input to Stage2. In order to design Stage2, the

values of Cout, s3, s2, s1, and s0 have been calculated

for all possible combinations of z3, z2, z1, z0, a0, b0,

and Cin and optimized boolean equations for Stage2

have been derived. To illustrate this procedure, the

various possible combinations are presented in Table II.

For example, if the values of z3, z2, z1, and z0 are 1, 0,

1, and 1, respectively, then this means that the value of 2

× (m + n) that is to be added to the value of (a0 + b0 +

Cin) is (16)10,since a0, b0, and Cin in the example are 1,

1, and 1 respectively. The value of A+B = 2 × (n +m) +

(a0 + b0 + Cin) is (19)10. Therefore, the computed

values for Cout, s3, s2, s1, and s0 are 1, 1, 0, 0, and 1,

respectively. Based on this, Stage2 generates the

decimal sum output and the decimal carry output.It

should be emphasized that our proposed BCD digit

adder does not require any corrections to the results and

the results are computed with only two stages.

Table 2: Examples from the truth table to demonstrate how the

final stage output is calculated

z3z2z1z0 z a0 b0 Cin cout s3s2s1s0

0000 0 0 0 0 0 0000

0000 0 0 0 1 0 0001

0001 2 0 1 0 0 0001

0001 2 0 1 1 0 0010

The truth table obtained above has to be simplified in

the similar way as we did for computing the Boolean

expression for the first stage output. And thus we derive

the Boolean expression for the corresponding sum and

output carry.
Cout=z2 cin b0 +z2 cin a0+z2 a0 b0+z3;

s3=z2 cin’ b0’+z2 cin’a0’+z1 z0 cin b0+z1 z0 cin a0+z1 z0 a0

b0+z2 a0’ b0’;

s2=z1cin’b0’+z1cin’a0’+z1a0’b0’+z1’z0cinb0+z1’z0cina0+z1

’z0a0b0+z0’z1;

 s1=z2’ z0’cin b0+z2’ z0’cin a0 z2’z0’a0 b0+z0 a0’ b0’+z0

cin’b0’+z0 cin’a0’;

s0=cin a0’b0’+cin’a0 b0’+cin’a0’b0+cin a0 b0;

4. Direct Boolean Expression BCD Digit

Multiplier
In the proposed direct Boolean expression BCD

digit multiplier, the direct functionality is performed by

using the simplified Boolean expression. In this case, the

two operands are two decimal digits A = a3a2a1a0 and

B = b3b2b1b0 and the output P = A × B is 8 bit

p7p6p5p4p3p2p1p0 (two BCD digits). The input given

is 8 bits wide; the number of possible combinations in

the truth table is 2
8
 = 256. Out of these 256

combinations only 100 combinations are valid and the

rest are invalid.

Fig.2 Design flow

Table 3: Examples from the Truth table of BCD multiplier

BUILDING TRUTHTABLE

GENERATING BOOLEAN EXPRESSION

GENERATING HDL CODE

DESIGN SIMULATION

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

4

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

Inputs Outputs

a3a2a1a0 b3b2b1b0 p7p6p5p4 p3p2p1p0

0000 0001 0000 0000

0010 0110 0001 0010

0100 1001 0011 0110

1010 1001 xxxx Xxxx

The truth table obtained above is then used for finding

the Boolean expression. Here we have done two level

logic optimization. And we will get the following

Boolean Expressions:

p0 = a0 b0;

p1 = a2 a1 a0 b3 + a2 a1' a0' b3 + a3 a0' b3 b0 + a3 b2

b1 b0 + a3 a0 b3 b0' + a3 b2 b1’b0' + a3' a2' a1' a0 b1 +

a2 a1 a0' b2 b1 + a1 b3' b2' b1' b0 + a2' a1 a0' b3 b0' +

a2 a1 a0' b1 b0' + a2 a1 b2 b1 b0' + a1 a0' b2 b1 b0' + a3

a0' b2' b1 b0' + a2 a1' a0' b2' b1 b0 + a2' a1 a0 b2 b1' b0'

+ a2 a1' a0' b2 b1' b0' + a2' a1' a0 b1 b0 + a1 a0 b2' b1'

b0 + a2' a1 a0' b2' b1 b0 + a2' a1 a0 b2' b1 b0';

p2 = a2' a1 b2' b1 b0' + a2 b3' b2' b1' b0 + a3' a1' a0 b2

b0 + a2' a1' a0 b2 b0' + a2 a0' b2' b1' b0 + a3 a0' b3 b0' +

a2' a1 b3 b0' + a3 a0' b2' b1 + a1 a0 b3 b0' + a3 a0' b1

b0 + a2 a0' b2 b0' + a2' a1 a0 b3 + a3 b2' b1 b0 + a2 a1'

a0 b0 + a0 b2 b1' b0 + a1 a0 b2' b1 b0' + a2' a1 a0' b1

b0;

p3 = a3' a2' a1' a0 b3 + a2' a1 a0' b3 b0 + a3 b3' b2' b1'

b0 + a2 a1 a0' b3 b0' + a3 a0' b2 b1 b0' + a3 a0 b2' b1

b0' + a2 a1 a0 b2 b1 b0 + a2 a1' a0' b2 b1 b0 + a2' a1 a0

b2' b1 b0 + a2 a1 a0' b2' b1 b0 + a2' a1 a0 b2 b1 b0' + a2

a1' a0' b2' b1 b0' + a2 a1 a0 b2 b1' b0' + a2' a1 a0' b2 b1'

b0';

p4 = a2' a1 a0' b3 + a2 a1' a0' b3 + a2 a1' a0 b1 + a3

a0' b3 b0 + a1 b2 b1' b0 + a3 a0 b3 b0' + a3 b2' b1 b0' +

a3 b2 b1' b0' + a3 a0' b2 b1 b0 + a2 a1 a0 b3 b0' + a2 a1'

a0' b2 b1' b0' + a1 a0' b3 b0 + a3 a0 b1 b0' + a2' a1 a0'

b2 b1 + a2 a0' b2' b1 b0 + a2' a1 a0 b2 b0' + a1 a0' b2

b1 b0' + a2 a1 b2' b1 b0';

p5 = a3 a0' b3 + a3 b3 b0' + a2' a1 a0 b3 + a2 a1' a0' b3

+ a1 a0 b3 b0 + a3 a0 b1 b0 + a3 b2' b1 b0 + a3 b2 b1'

b0' + a2' a1 a0 b2 b1 b0 + a2 a1 a0 b2' b1 b0 + a2 a1' b2

b1 + a2 a0 b2 b1' + a2 b2 b1' b0 + a2 a1 a0' b2 b0';

p6= a2 a1 b3 + a2 a0 b3 + a3 a0' b3 + a3 b2 b1 + a3 b2

b0 + a3 b3 b0' + a2 a1 a0 b2 b1 + a2 a1 b2 b1 b0;

p7 = a3 a0 b3 b0;

The two level optimization we done here will increase

the area and delay. Therefore in order to reduce that we

have to go for multilevel optimization. The advantages

of the multilevel logic optimization includes

minimizing overall layout area and critical path delay

time, maximizing the testability of the synthesized logic

and providing a complete set of test vectors as a by-

product of the optimization.

5. Multilevel Logic Optimization
Multilevel logic can be described by a set χ of

completely specified Boolean functions. Each Boolean

function f € χ , maps one or more input and intermediate

signals to an output or a new intermediate signal. If a

circuit is represented as a Boolean network, each node

has a Boolean variable and a Boolean expression

associated with it. There is a directed edge to a node g

from a node f if the expression associated with node g

contains in it the variable associated with f in either true

or complemented form. A circuit is also viewed as a set

of gates. Each gate has one or more input pins and one

output pin.

Here we are applying this logic to the proposed

correction free decimal digit adder* and decimal digit

multiplier* thereby minimizing the boolean expression.

For that we need to factorize each Boolean expression

and have to substitute values for the common terms

present in all the expressions. For example, in the case

of adder the Boolean expression for z3 can be written as:

z3=m6g1+m4a1’+m5b1’+m8+m9+m3;

Where m6=a2b2, g1=a1+b1;

m4=a2b3, m5=a3b2;

m8=a1b3, m9=a3+b1;

m3=a3b3

Similarly all other expressions can be written by

assigning values to the common terms. The same

procedures have to be followed for decimal digit

multiplier.

6. Results and Comparisons

From the table given below it is clear that the

synthesis results of the correction free adder and

multiplier after multilevel logic optimization has

comparatively smaller area.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

5

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

Table 4: Area for decimal digit adder and decimal digit

multiplier

Decimal digit adder

Area in number of LUT’s

Proposed decimal digit adder(3)

11

Multilevel logic optimized

adder*

10

Conditional speculative adder

[3]

19

Decimal digit multiplier

Area in number of LUT’s

Proposed decimal digit multiplier

(4)

29

Multilevel logic optimized
multiplier*

28

BCD digit multiplier [2]

32

Fig: 3 Simulation result of Correction free BCD adder

Fig: 4 Simulation result of Correction free BCD multiplier

7. Conclusion

In this paper, direct Boolean expression binary coded

decimal digit adder and multiplier will produce the

output in the BCD form. As a result a correction free

BCD digit adder and multiplier is obtained when

compared with the existing system which needs an

analyzer circuit for determining the whether the output

value is greater than 9.Here the Boolean expression is

obtained using two-level logic optimization is modified

to multilevel logic optimization for reducing the area

and delay. The design is synthesized, verified and tested

for correct functionality using verilog coding and

simulation.

References

[1] Alp Arslan Bayrakci and Ahmet Akkas “Reduced Delay

BCD Adder” IEEE International Conf. on Application-

specific Systems, Architectures and Processors (ASAP 2007).

Volume-Issue: 9-11, Page(s):266-271 July 2007

[2] A. Vazquez, E. Antelo, and P. Montuschi, “A new family

of high performance parallel decimal multipliers,” in IEEE

Symposium on Computer Arithmetic, Washington, DC,ARITH

’07, pp. 195–204, IEEE Computer Society,2007

[3] A. V´azquez and E. Antelo, “Conditional speculative

decimal addition, “Nancy, France, 2006, pp. 47–57.

[4] E. M. Schwarz, “Decimal multiplication with efficient

partial product generation,” in IEEE Symposium on Computer

Arithmetic, Washington, DC, USA, ARITH ’05, pp. 21–28,

IEEE Computer Society,2005

[5]G. Jaberipur and A. Kaivani, “Binary-coded decimal digit

multipliers,”IET Computers and Digital Techniques, vol. 1, no.

4, pp. 377–381, 2007

[6] I.S. Hwang, “High Speed Binary and Decimal Arithmetic

Unit”, United States Patent 2007.

 [7] M. M. Mano. Digital Design, pages 129–131, Prentice

Hall, third edition, 2002.

[8] M. A. Erle and M. J. Schulte”Decimal multiplication via

carry-save Addition”. IEEE Int’l Conference on Application

Specific system Architectures and Processors, pages 348–358,

June 2003.

[9] Osama Al-Khaleel, Mohammad Al-Khaleel, Zakaria Al-

Qudah “Fast Binary/Decimal Adder/Subtractor with a Novel

Correction-Free BCD Addition” in IEEE Conference on

Computer arithmetic, 2011

